The Character of Photo-electrochemistry of Palladium Implanted TiO₂ Nano-crystalline Electrode

Cun Zhong ZHANG¹, Jing YANG¹, Zhong Da WU¹* Sheng Min CAI², En Qin GAO²

¹Department of Chemistry, Beijing Normal University, Beijing 100875 ²Department of Chemistry, Peking University, Beijing 100871

Abstract: A new electrode was prepared by using Pd implanted into nano-crystalline TiO_2 and the character of photo-electrochemistry of implanted electrodes was investigated. The energy band structure of nano-crystalline TiO_2 has not changed after implantation with Pd. The photo-current (i_{ph}) of palladium implanted TiO_2 nano-crystalline electrode is larger than that of pure TiO_2 nano-crystalline electrode.

Keywords: Ion implantation, photo-electrochemistry, titanium dioxide, palladium, nano-crystalline

Many methods have been adopted to improve the character of photo-electrochemistry of $TiO_2^{1,2}$. Ion implantation is a technique with unique advantage to modify other electrodes and has been used in many electrochemical research fields³. In this paper we chose palladium ion implantation to modify nano-crystallineTiO₂ and investigated the effect of implanted Pd.

Experimental

The nano-crystalline TiO₂ was prepared with hydrothermal method which was reported elsewhere⁴. The pH of reaction media was controlled at pH 1.8. The suspension of TiO₂was covered on the ITO glass, sintered in the oven at 450°C for 30 min and cooled to room temperature at once. A layer of porous TiO₂ film formed on the conducing glass, designated as TiO₂/ITO. The implantation of Pd (99.9%) was carried out by using a metal vapor vacuum arc (MEVVA) source ion implanter. The implanted electrodes were designated as Pd/TiO₂/ITO. The extracting voltage and beam current of Pd ion beam were about 45 KeV and 1mA, respectively. The implanted doses of Pd are 5 × 10¹⁵ ions/cm² and 1×10¹⁶ ions/cm². The photo-electrochemical measurements were carried out by using a standard three-electrode system equipped with quartz window, a saturated calomel reference electrode and a Pt plate counter electrode. 0.1 mol L⁻¹ NH₄SCN solution (pH=7) was used as electrolyte. A Model 173 potentiostat was used for potentionstatic control and a Type 3036 X-Y Recorder was used for recording i_{ph}. The light source was a 200 W Xenon lamp. The area of light spot was 0.2 cm².

The TiO₂/ITO electrode was immersed into 0.1 mol.L⁻¹ NH₄SCN. At stable open-current potential the wave length (λ) of monochromatic light was changed from 300 nm to 430 nm, i_{ph} corresponding to each λ was recorded. From 300 nm to 340 nm,

Cun Zhong ZHAN et al.

the i_{ph} increased rapidly and reached its maximum at the scope of wave length, from 340 nm to 350 nm. When the wave length became longer than 350 nm, the i_{ph} became decline (**Figure1**). The character of $i_{ph} - \lambda$ curve was determined by the energy band structure of TiO₂.

Under the same conditions, the i_{ph} - λ curve of Pd/TiO₂/ITO (5×10¹⁵ ions/cm²) or Pd/TiO₂/ITO (1×10¹⁶ ions/cm²) electrode was recorded respectively. The outline of each $i_{ph} - \lambda$ curve of Pd/TiO₂/ITO electrode is the same as that of TiO₂/ITO electrode. It indicated that the energy band structure of TiO₂ has not changed by implantation with Pd. In addition, the result revealed that i_{ph} of Pd/TiO₂/ITO (5×10¹⁵ ions/cm²) or of Pd/TiO₂/ITO (1×10¹⁶ ions/cm²) electrode is about 95 times or 18 times greater than that of TiO₂/ITO electrode (**Figure1**).

It is ascribed to forming Pd/TiO_2 interface. Because the work function of palladium is larger than that of TiO_2 , at the interface of two materials, electron migrating from TiO_2 to palladium occurs until the two Fermi levels are aligned¹. So a space charge layer forms at the interface of two materials which are connected electrically. The space charge layer favors the separation of photo-generated electron-hole pairs, so i_{ph} became larger. Comparing i_{ph} of Pd/TiO₂/ITO electrodes with different implantation doses, it was found that the i_{ph} did not increase with the increasing of implantation dose. The details will be investigated further.

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China.

References

A.L.Linsebigler, G.Q.Lu, J.T.Yates.Jr., *Chem.Rev.*, **1995**, *95*, 735.
K.Hirano, K.Inoue, T.Yatsu, *J.Photochem.Photobiol.A: Chem.*, **1992**, *64*, 255.
G.K.Wolf, *Rad.Eff.*, **1982**, *65*, 107.
H.M.Cheng, J.M.Ma *et.al*, *Chem.Mater.*, **1995**, *7*, 663.

Received January 27, 2000 Revised September 20, 2000